Code: 19EC3302,19EE3302

II B.Tech - I Semester - Regular Examinations - MARCH 2021

ELECTRONIC DEVICES AND AMPLIFIER CIRCUITS

(Common for ECE, EEE)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place

PART – A

- 1. a) Draw the small signal models of *npn* and *pnp* transistors.
 - b) Consider a process technology for which $L_{min} = 0.4 \mu m$, $t_{ox} = 8 \text{nm}$, $\mu_n = 450 \text{ cm}^2/\text{V} \cdot \text{s}$, and $V_t = 0.7 \text{V}$. Find C_{ox} and k'_n assume the values of other parameters, if required.
 - c) Compare MOSFET and BJT devices.
 - d) Discuss the operation of MOS differential pair.
 - e) Explain the operation of CMOS OpAmp.

PART - B

<u>UNIT – I</u>

2. a) Draw the basic construction and equivalent circuit of a Bipolar Junction Transistor. Briefly explain the base width modulation.

6 M

b) A transistor for which $I_s = 10^{-16}$ A and $\beta = 100$ is conducting a collector current of 1 mA. Find v_{BE} . Also, find I_{SE} and I_{SB} for this transistor.

6 M

3.	a)	Explain the working of CE and CB amplifiers.	6 M
	b)	Consider a <i>pnp</i> transistor with $v_{EB} = 0.7 \text{ V}$ at $i_E = 1 \text{ mA}$.	
		Let the base be grounded, the emitter be fed by a 2-mA	
		constant-current source, and the collector be connected	
		to a -5 -V supply through a 1- $k\Omega$ resistance. If the	
		temperature increases by 30°C, find the changes in	
		emitter and collector voltages. Neglect the effect of	
		I_{CBO} .	6 M
		<u>UNIT – II</u>	
4.	a)	Discuss biasing in MOS amplifier circuits in common	
		source configuration.	6 M
	b)	Compare the enhancement mode and depletion mode	
		MOS transistors.	6 M
		OR	
5.	a)	Explain common gate and common drain amplifiers in	
		detail.	6 M
	b)	A CG amplifier is required to match a signal source	
		with $R_{sig} = 100\Omega$. At what current I_D should the	
		MOSFET be biased if it is operated at an overdrive	
		voltage of 0.20 V? If the total resistance in the drain	
		circuit is 2 k Ω , what overall voltage gain is realized?	6 M
		<u>UNIT-III</u>	
6.	a)	Explain the working of Wilson current mirror.	6 M

6 M

	b)	For $\beta = 100$ and $r_0 = 100 \text{ k}\Omega$, contrast the Wilson mirror and the simple mirror by evaluating the transfer-ratio	
		error due to finite β , and the output resistance.	6 M
		OR	
7.	a)	For a cascode MOS mirror utilizing devices with $V_t = 0.5$ V, $\mu_n C_{ox} = 387$ μ A/V ² , $V'_A = 5$ V/ μ m,	
		$W/L = 3.6 \mu \text{m}$, and $I_{REF} = 100 \mu \text{A}$, find the minimum	
	1- \	voltage required at the output and the output resistance.	6 M
	D)	Explain the operation of cascode current mirror.	6 M
		<u>UNIT – IV</u>	
8.	a)	Discuss the importance of stability factor in amplifier	
		design.	6 M
	b)	Discuss about low and high frequency response of	
		common drain amplifiers.	6 M
		OR	
9.	a)	Explain small-signal operation of the MOS differential	
		pair.	6 M
	b)	Explain large signal operation in differential amplifier.	6 M
		$\mathbf{UNIT} - \mathbf{V}$	
10.	a)	Discuss MOS differential amplifier with active load.	6 M
		Discuss multistage MOS amplifiers.	
	U)		6 M
11	٥)	OR	
11.	a)	Explain input offset voltage of MOS differential pair.	6 M
	b)	Explain input bias and offset currents of MOS pair.	6 M